96,29 €
96,29 €
inkl. MwSt.
Sofort per Download lieferbar
96,29 €
96,29 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
96,29 €
inkl. MwSt.
Sofort per Download lieferbar
Jetzt verschenken
96,29 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
  • Format: PDF

Starting from a broad overview of heat transport based on the Boltzmann Transport Equation, this book presents a comprehensive analysis of heat transport in bulk and nanomaterials based on a kinetic-collective model (KCM). This has become key to understanding the field of thermal transport in semiconductors, and represents an important stride. The book describes how heat transport becomes hydrodynamic at the nanoscale, propagating very much like a viscous fluid and manifesting vorticity and friction-like behavior. It introduces a generalization of Fourier's law including a hydrodynamic term…mehr

Produktbeschreibung
Starting from a broad overview of heat transport based on the Boltzmann Transport Equation, this book presents a comprehensive analysis of heat transport in bulk and nanomaterials based on a kinetic-collective model (KCM). This has become key to understanding the field of thermal transport in semiconductors, and represents an important stride. The book describes how heat transport becomes hydrodynamic at the nanoscale, propagating very much like a viscous fluid and manifesting vorticity and friction-like behavior. It introduces a generalization of Fourier's law including a hydrodynamic term based on collective behavior in the phonon ensemble. This approach makes it possible to describe in a unifying way recent experiments that had to resort to unphysical assumptions in order to uphold the validity of Fourier's law, demonstrating that hydrodynamic heat transport is a pervasive type of behavior in semiconductors at reduced scales.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Pol Torres' scientific and professional career is based on a background in physics and energy engineering complemented with master studies in nanotechnology and materials science. His research career started with experimental and theoretical work on the thermal decomposition of precursors to synthetize and characterize superconductor samples. His doctoral work focused on a theoretical study of thermal transport in semiconductors within a microscopic and macroscopic framework.