128,95 €
128,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
64 °P sammeln
128,95 €
128,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
64 °P sammeln
Als Download kaufen
128,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
64 °P sammeln
Jetzt verschenken
128,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
64 °P sammeln
  • Format: ePub

Progress and Recent Trends in Microbial Fuel Cells provides an in-depth analysis of the fundamentals, working principles, applications and advancements (including commercialization aspects) made in the field of Microbial Fuel Cells research, with critical analyses and opinions from experts around the world. Microbial Fuel cell, as a potential alternative energy harnessing device, has been progressing steadily towards fruitful commercialization. Involvements of electrolyte membranes and catalysts have been two of the most critical factors toward achieving this progress. Added applications of…mehr

Produktbeschreibung
Progress and Recent Trends in Microbial Fuel Cells provides an in-depth analysis of the fundamentals, working principles, applications and advancements (including commercialization aspects) made in the field of Microbial Fuel Cells research, with critical analyses and opinions from experts around the world. Microbial Fuel cell, as a potential alternative energy harnessing device, has been progressing steadily towards fruitful commercialization. Involvements of electrolyte membranes and catalysts have been two of the most critical factors toward achieving this progress. Added applications of MFCs in areas of bio-hydrogen production and wastewater treatment have made this technology extremely attractive and important.

.

  • Reviews and compares MFCs with other alternative energy harnessing devices, particularly in comparison to other fuel cells
  • Analyses developments of electrolyte membranes, electrodes, catalysts and biocatalysts as critical components of MFCs, responsible for their present and future progress
  • Includes commercial aspects of MFCs in terms of (i) generation of electricity, (ii) microbial electrolysis cell, (iii) microbial desalination cell, and (iv) wastewater and sludge treatment

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Patit Paban Kundu has been a professor in the Department of Chemical Engineering at the Indian Institute of Technology-Roorkee since 2016. After completing his BSc in chemistry (1986), and BTech (1989) and MTech (1992) in plastics and rubber technology from University of Calcutta, he joined the group of Prof. D.K. Tripathy at the Indian Institute of Technology-Kharagpur's Rubber Technology Center for carrying out his doctoral research. Following his PhD in 1996, he joined as a lecturer in the Department of Chemical Technology, Sant Longowal Institute of Engineering and Technology, India, and was elevated to the position of professor in 2007. In 2009, he moved to University of Calcutta as a professor in the Department of Polymer Science and Technology, and stayed there until 2016. He did his postdoctoral studies in South Korea at the Inha University with Prof. S. Choe (2001-02) and at the Yonsei University with Prof. Y.G. Shul (2006), and in the United States at Iowa State University with Prof. R.C. Larock (2003). He is a polymer chemist and technologist and has been actively working in the field of fuel cells as one of his areas of expertise. To date, he has published about 200 papers in peer-reviewed journals. He has also contributed to eight book chapters and numerous conference proceedings. His interest in fuel cells includes microbial, direct methanol, and hydrogen fuel cells, and ranges from finding novel materials for fabricating membranes, electrodes, catalysts, and catalyst supports to the design of membrane electrode assemblies and flow channels. He has also successfully undertaken various national level projects in areas including microbial and direct methanol fuel cells.