Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores.…mehr
This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.
Malay K. Das is an Associate Professor in the Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India; Partha P. Mukherjee is an Associate Professor the Department of Mechanical Engineering, Purdue University, USA; and K. Muralidhar is a Professor in the Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India.
Inhaltsangabe
Introduction.- Fundamentals of Flow, Heat, Mass and Charge Transfer through Porous Media.- Mesoscale Interactions of Transport Phenomena in Polymer Electrolyte Fuel Cells.- Porous Media Application: Electrochemical Systems.- Porous Media Applications: Biological Systems.- Oscillatory Flow in a Mesh-type Regenerator.- Geological Systems, Methane Recovery and CO2 sequestration.- Closure.
Introduction.- Fundamentals of Flow, Heat, Mass and Charge Transfer through Porous Media.- Mesoscale Interactions of Transport Phenomena in Polymer Electrolyte Fuel Cells.- Porous Media Application: Electrochemical Systems.- Porous Media Applications: Biological Systems.- Oscillatory Flow in a Mesh-type Regenerator.- Geological Systems, Methane Recovery and CO2 sequestration.- Closure.
Introduction.- Fundamentals of Flow, Heat, Mass and Charge Transfer through Porous Media.- Mesoscale Interactions of Transport Phenomena in Polymer Electrolyte Fuel Cells.- Porous Media Application: Electrochemical Systems.- Porous Media Applications: Biological Systems.- Oscillatory Flow in a Mesh-type Regenerator.- Geological Systems, Methane Recovery and CO2 sequestration.- Closure.
Introduction.- Fundamentals of Flow, Heat, Mass and Charge Transfer through Porous Media.- Mesoscale Interactions of Transport Phenomena in Polymer Electrolyte Fuel Cells.- Porous Media Application: Electrochemical Systems.- Porous Media Applications: Biological Systems.- Oscillatory Flow in a Mesh-type Regenerator.- Geological Systems, Methane Recovery and CO2 sequestration.- Closure.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497