This book presents research on Boundary Layer Ingestion (BLI). BLI is an aircraft-engine integration technique that aims at integrating the aircraft and the propulsion system such that the overall aircraft fuel consumption can be reduced. In this research, theoretical analysis suggests that the minimization of total power consumption should be used as a design criterion for aircraft utilizing BLI rather than focusing on the minimization of drag. Numerical simulations are performed, and the simulation results are processed using the PBM to support the theoretical analysis. Furthermore, an…mehr
This book presents research on Boundary Layer Ingestion (BLI). BLI is an aircraft-engine integration technique that aims at integrating the aircraft and the propulsion system such that the overall aircraft fuel consumption can be reduced. In this research, theoretical analysis suggests that the minimization of total power consumption should be used as a design criterion for aircraft utilizing BLI rather than focusing on the minimization of drag. Numerical simulations are performed, and the simulation results are processed using the PBM to support the theoretical analysis. Furthermore, an experimental study is carried out with a focus on the power conversion processes involved for a propulsor operating in the wake. Stereoscopic PIV is employed in order to visualize the flow and understand the physics. The so-called Power-based Method is used to quantify the power conversion mechanisms. The results prove that the dominant mechanism responsible for the efficiency enhancement is due tothe utilization of body wake energy by the wake ingesting propeller. In short, the importance of wake energy flow rate in understanding the BLI phenomenon is highlighted. This book will be useful for researchers in the field of aircraft propulsion, aircraft aerodynamics, and airframe propulsion integration.
Like many boys, Peijian Lv was fascinated with aircraft in his childhood. He was lucky enough to study aerospace engineering in universities. In 2007, Peijian Lv received his B.E. degree in flight vehicle propulsion engineering from Northwestern Polytechnical University, China. From the same university, he obtained his M.Sc. degree in flight vehicle design engineering in 2011. With the learned knowledge of aircraft propulsion and airframe aerodynamics, he decided to explore the domain where propulsion system and airframe are tightly integrated. Boundary Layer Ingestion is the topic for his Ph.D. study. In 2019, he obtained his Doctoral degree in aerospace engineering from Delft University of Technology, Delft, the Netherlands. Since 2020, he has been working as a postdoctoral researcher in the School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China. His research interests focus on aircraft propulsion, aircraft aerodynamics, and airframe propulsion integration.
Inhaltsangabe
Chapter 1Introduction.- Chapter 2Propulsion integration.- Chapter 3A theoretical analysis of boundary layer ingestion and wake ingestion.- Chapter 4Power based analysis of boundary layer ingestion through numerical simulations.- Chapter 5Experimental study of the flow mechanisms associated with a propulsor ingesting a body wake.- Chapter 6Conclusions and Recommendations.
Chapter 1Introduction.- Chapter 2Propulsion integration.- Chapter 3A theoretical analysis of boundary layer ingestion and wake ingestion.- Chapter 4Power based analysis of boundary layer ingestion through numerical simulations.- Chapter 5Experimental study of the flow mechanisms associated with a propulsor ingesting a body wake.- Chapter 6Conclusions and Recommendations.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826