35,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
18 °P sammeln
  • Broschiertes Buch

Notons D l'anneau des opérateurs différentiels linéaires à coefficients analytiques. Nous étudions les résolutions libres minimales de D-modules bifiltrés, introduites par M. Granger, T. Oaku et N. Takayama. Nous nous intéressons particulièrement aux rangs d'une telle résolution minimale, appelés nombres de Betti, qui sont des invariants du module. Nous donnons d'abord des résultats généraux : nous ramenons le calcul des nombres de Betti à une situation d'algèbre commutative et nous définissons les résolutions minimales génériques. Ensuite, nous considérons une singularité d'hypersurface…mehr

Produktbeschreibung
Notons D l'anneau des opérateurs différentiels linéaires à coefficients analytiques. Nous étudions les résolutions libres minimales de D-modules bifiltrés, introduites par M. Granger, T. Oaku et N. Takayama. Nous nous intéressons particulièrement aux rangs d'une telle résolution minimale, appelés nombres de Betti, qui sont des invariants du module. Nous donnons d'abord des résultats généraux : nous ramenons le calcul des nombres de Betti à une situation d'algèbre commutative et nous définissons les résolutions minimales génériques. Ensuite, nous considérons une singularité d'hypersurface complexe f(x)=0 et le module N de cohomologie locale algébrique supporté par f-t=0. Le module N est naturellement muni de la V-filtration de Kashiwara-Malgrange le long de t=0. Nous étudions les nombres de Betti correspondants, ce sont des invariants analytiques pour l'hypersurface f=0. Nous les calculons pour f une singularité isolée quasi homogène ou un monôme. Lorsque f est à singularité isolée, nous caractérisons la quasi-homogénéité par les nombres de Betti. Ce texte s'adresse à des étudiants ou chercheurs en mathématiques (géométrie algébrique).
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Docteur en mathématiques de l'Université d'Angers, Rémi Arcadias a effectué des séjours de recherche post-doctoraux à Tokyo (Tokyo Woman's Christian University) et à l'Université de Séville. Sa recherche porte sur la théorie des modules sur les anneaux d'opérateurs différentiels et la géométrie algébrique.