214,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
107 °P sammeln
  • Broschiertes Buch

NanoArmored Enzymes for High Temperature Biocatalysis provides insight on the central theme of entropy minimization for the stabilization of enzymes using linear synthetic polymers. The book describes methods for the conversion of ordinary enzymes into those that can withstand organic solvents, extreme pHs and higher temperatures. Many books written about enzyme stabilization employ a variety of hit-or-miss approaches, but rational approaches based on molecular engineering were never explored. This book addresses missing links in the field of enzyme catalysis at high temperature by exploiting…mehr

Produktbeschreibung
NanoArmored Enzymes for High Temperature Biocatalysis provides insight on the central theme of entropy minimization for the stabilization of enzymes using linear synthetic polymers. The book describes methods for the conversion of ordinary enzymes into those that can withstand organic solvents, extreme pHs and higher temperatures. Many books written about enzyme stabilization employ a variety of hit-or-miss approaches, but rational approaches based on molecular engineering were never explored. This book addresses missing links in the field of enzyme catalysis at high temperature by exploiting the polymer encapsulation of enzymes based on a solid foundation of physical chemistry principles.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Challa Vijaya Kumar, PhD is a senior professor at the University of Connecticut and has more than 40 years of research experience in interdisciplinary research areas including biological chemistry, physical chemistry, organic chemistry, photochemistry, biochemistry and material chemistry. He has more than 158 peer-reviewed publications and several book chapters in internationally reputed journals. He has been actively working in the area of bio-related two-dimensional materials for nearly 25 years and has published 10 papers on graphene related topics in the last 3 years. More importantly, his research lab pioneered the synthesis of graphene in aqueous conditions using proteins as exfoliating agents.