Differential geometry consists of study of curves and surfaces embedded in three dimensional Euclidean space. Manifolds are the generalizations of surfaces to arbitrarily higher dimensional spaces and provide mathematical context for understanding space in all of its manifestations. Manifolds inherit number of local properties of Euclidean space. In this book, the geometric aspects of slant lightlike submanifolds of indefinite complex and contact manifolds have been explored. The axioms of indefinite hemi-slant planes and spheres with lightlike submanifolds have been introduced. Further, the non-existence of warped product slant lightlike submanifolds have been obtained. Moreover, slant lightlike submersion from an indefinite Hermitian manifold onto a lightlike manifold have been introduced.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.