23,95 €
23,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
12 °P sammeln
23,95 €
23,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
12 °P sammeln
Als Download kaufen
23,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
12 °P sammeln
Jetzt verschenken
23,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
12 °P sammeln
  • Format: ePub

Gain the knowledge of various deep neural network architectures and their application areas to conquer your NLP issues.Key FeaturesGain insights into the basic building blocks of natural language processingLearn how to select the best deep neural network to solve your NLP problemsExplore convolutional and recurrent neural networks and long short-term memory networksBook DescriptionApplying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts off by…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 21.62MB
  • FamilySharing(5)
Produktbeschreibung
Gain the knowledge of various deep neural network architectures and their application areas to conquer your NLP issues.Key FeaturesGain insights into the basic building blocks of natural language processingLearn how to select the best deep neural network to solve your NLP problemsExplore convolutional and recurrent neural networks and long short-term memory networksBook DescriptionApplying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts off by highlighting the basic building blocks of the natural language processing domain. The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this, delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book, you'll study convolutional, recurrent, and recursive neural networks, in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In the later chapters, you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search.By the end of this book, you will not only have sound knowledge of natural language processing but also be able to select the best text pre-processing and neural network models to solve a number of NLP issues.What you will learnUnderstand various pre-processing techniques for deep learning problemsBuild a vector representation of text using word2vec and GloVeCreate a named entity recognizer and parts-of-speech tagger with Apache OpenNLPBuild a machine translation model in KerasDevelop a text generation application using LSTMBuild a trigger word detection application using an attention modelWho this book is forIf you're an aspiring data scientist looking for an introduction to deep learning in the NLP domain, this is just the book for you. Strong working knowledge of Python, linear algebra, and machine learning is a must.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.