218,99 €
inkl. MwSt.
Versandkostenfrei*
Erscheint vorauss. 1. Juli 2025
payback
109 °P sammeln
  • Broschiertes Buch

Process monitoring is used to analyse the operational status of the process system and provide an early warning in order to prevent industrial accidents. It is therefore an effective means to facilitate efficient, safe and optimal operation of industrial processes. Spatio-Temporal Learning Using Irregular Data for Complex Dynamic Processes introduces learning, modelling and monitoring methods for highly complex dynamic processes that have irregular data. Two classes of robust modelling methods are included in the book: firstly, low-rank characteristic of matrices and heavy-tailed…mehr

Produktbeschreibung
Process monitoring is used to analyse the operational status of the process system and provide an early warning in order to prevent industrial accidents. It is therefore an effective means to facilitate efficient, safe and optimal operation of industrial processes. Spatio-Temporal Learning Using Irregular Data for Complex Dynamic Processes introduces learning, modelling and monitoring methods for highly complex dynamic processes that have irregular data. Two classes of robust modelling methods are included in the book: firstly, low-rank characteristic of matrices and heavy-tailed characteristic of distributions. In this class, the missing data, ambient noise, and outlier problems are solved using low-rank matrix complement for monitoring model development. Secondly: the Laplace distribution, which is adopted to measure the process uncertainty to develop robust monitoring models. The book not only discusses the complex models but also their real-world applications in industry
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Chunhui Zhao is a Qiushi distinguished professor at Zhejiang University in China, and an expert in intelligent industrial monitoring with 20 years of experience in this field. She has authored or co-authored more than 400 papers in peer-reviewed international journals and conferences. Her research interests include statistical machine learning and data mining for industrial applications.