Weixun Wang, Prabhat Mishra, Sanjay Ranka
Dynamic Reconfiguration in Real-Time Systems (eBook, PDF)
Energy, Performance, and Thermal Perspectives
96,29 €
inkl. MwSt.
Sofort per Download lieferbar
Weixun Wang, Prabhat Mishra, Sanjay Ranka
Dynamic Reconfiguration in Real-Time Systems (eBook, PDF)
Energy, Performance, and Thermal Perspectives
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Given the widespread use of real-time multitasking systems, there are tremendous optimization opportunities if reconfigurable computing can be effectively incorporated while maintaining performance and other design constraints of typical applications. The focus of this book is to describe the dynamic reconfiguration techniques that can be safely used in real-time systems. This book provides comprehensive approaches by considering synergistic effects of computation, communication as well as storage together to significantly improve overall performance, power, energy and temperature.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.9MB
- Upload möglich
Andere Kunden interessierten sich auch für
- Embedded Systems for Smart Appliances and Energy Management (eBook, PDF)96,29 €
- FPGA Based Accelerators for Financial Applications (eBook, PDF)96,29 €
- Dirk KochPartial Reconfiguration on FPGAs (eBook, PDF)149,79 €
- Benny AkessonMemory Controllers for Real-Time Embedded Systems (eBook, PDF)96,29 €
- Embedded Systems Development (eBook, PDF)96,29 €
- Design Technologies for Green and Sustainable Computing Systems (eBook, PDF)96,29 €
- Sanjoy BaruahMultiprocessor Scheduling for Real-Time Systems (eBook, PDF)106,99 €
-
-
-
Given the widespread use of real-time multitasking systems, there are tremendous optimization opportunities if reconfigurable computing can be effectively incorporated while maintaining performance and other design constraints of typical applications. The focus of this book is to describe the dynamic reconfiguration techniques that can be safely used in real-time systems. This book provides comprehensive approaches by considering synergistic effects of computation, communication as well as storage together to significantly improve overall performance, power, energy and temperature.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Erscheinungstermin: 20. Juli 2012
- Englisch
- ISBN-13: 9781461402787
- Artikelnr.: 37786403
- Verlag: Springer New York
- Erscheinungstermin: 20. Juli 2012
- Englisch
- ISBN-13: 9781461402787
- Artikelnr.: 37786403
WeixunWang is a software engineer in Amazon.com, Seattle,WA. He received his B.E. degree in software engineering from the Software Institute, Nanjing University, China, in 2007, and a Ph.D. degree in computer engineering from the University of Florida in 2011. His research interests include energy-aware computing, design automation of embedded systems, computer architecture, reconfigurable architectures and real-time scheduling. He has published more than 10 papers in these fields. He is a member of IEEE.
Prabhat Mishra is an Associate Professor in the Department of Computer and Information Science and Engineering (CISE) at the University of Florida. His research interests include design automation of embedded systems, hardware/software verification, VLSI CAD, and low-power reconfigurable architectures. He received his B.E. from Jadavpur University, Kolkata, in 1994, M.Tech. from the Indian Institute of Technology, Kharagpur in 1996, and Ph.D. from the University of California, Irvine, in 2004 – all in Computer Science. Prior to joining University of Florida, he spent several years in various semiconductor and design automation companies, including Intel, Motorola, Synopsys and Texas Instruments. He has published two books (Springer 2005 and MK 2008), nine book chapters and more than 80 research articles in premier journals and conferences. His research has been recognized by several awards including the NSF CAREER Award from the National Science Foundation, two best paper awards (VLSI Design 2011 and CODES+ISSS 2003), several best paper award nominations, and 2004 EDAA Outstanding Dissertation Award from the European Design Automation Association. He has also received the 2007 International Educator of the Year Award from the UF College of Engineering for his significant international research and teaching contributions. He currently serves as an Associate Editor of IEEE Design & Test of Computers (D&T), Guest Editor of IEEE Transactionson Computers (TC), the Information Director of ACM Transactions on Design Automation of Electronic Systems (TODAES), and as a program/organizing committee member of several ACM and IEEE conferences including ICCAD, DATE, ASPDAC, CODES+ISSS, and VLSI Design. He has also served as General Chair of IEEE High Level Design Validation and Test (HLDVT) 2010, Program Chair of HLDVT 2009, and Guest Editor of IEEE Design & Test of Computers (D&T), Journal of Electronic Testing (JETTA) and International Journal of Parallel Programming (IJPP). He is a senior member of ACM and a senior member of IEEE.
Sanjay Ranka is a Professor in the Department of Computer Information Science and Engineering at University of Florida. His current research interests are energy efficient computing, high performance computing, data mining and informatics. Most recently he was the Chief Technology Officer at Paramark where he developed real-time optimization software for optimizing marketing campaigns. Sanjay has also held positions as a tenured faculty member at Syracuse University and as a researcher/visitor at IBM T.J. Watson Research Labs and Hitachi America Limited. Sanjay earned his Ph.D. (Computer Science) from the University of Minnesota and a B. Tech. in Computer Science from IIT, Kanpur, India. He has coauthored two books: Elements of Neural Networks (MIT Press) and Hypercube Algorithm (Springer Verlag), 75 journal articles and 125 refereed conference articles. His recent work has received a student best paper award at ACM-BCB 2010, best paper runner up award at KDD-2009, a nomination for the Robbins Prize for the best paper in journal of Physics in Medicine and Biology for 2008, and a best paper award at ICN 2007. He is a fellow of the IEEE and AAAS and a member of IFIP Committee on System Modeling and Optimization. He is the associate Editor-in-Chief of the Journal of Parallel and Distributed Computing and an associate editor for IEEE Transactions onParallel and Distributed Computing, IEEE Transactions on Computers, Sustainable Computing: Systems and Informatics, Knowledge and Information Systems, and International Journal of Computing. He was a past member of the Parallel Compiler Runtime Consortium, the Message Passing Initiative Standards Committee and Technical Committee on Parallel Processing. He was the program chair for 2010 International Conference on Contemporary Computing and co-general chair for 2009 International Conference on Data Mining and 2010 International Conference on Green Computing.
Prabhat Mishra is an Associate Professor in the Department of Computer and Information Science and Engineering (CISE) at the University of Florida. His research interests include design automation of embedded systems, hardware/software verification, VLSI CAD, and low-power reconfigurable architectures. He received his B.E. from Jadavpur University, Kolkata, in 1994, M.Tech. from the Indian Institute of Technology, Kharagpur in 1996, and Ph.D. from the University of California, Irvine, in 2004 – all in Computer Science. Prior to joining University of Florida, he spent several years in various semiconductor and design automation companies, including Intel, Motorola, Synopsys and Texas Instruments. He has published two books (Springer 2005 and MK 2008), nine book chapters and more than 80 research articles in premier journals and conferences. His research has been recognized by several awards including the NSF CAREER Award from the National Science Foundation, two best paper awards (VLSI Design 2011 and CODES+ISSS 2003), several best paper award nominations, and 2004 EDAA Outstanding Dissertation Award from the European Design Automation Association. He has also received the 2007 International Educator of the Year Award from the UF College of Engineering for his significant international research and teaching contributions. He currently serves as an Associate Editor of IEEE Design & Test of Computers (D&T), Guest Editor of IEEE Transactionson Computers (TC), the Information Director of ACM Transactions on Design Automation of Electronic Systems (TODAES), and as a program/organizing committee member of several ACM and IEEE conferences including ICCAD, DATE, ASPDAC, CODES+ISSS, and VLSI Design. He has also served as General Chair of IEEE High Level Design Validation and Test (HLDVT) 2010, Program Chair of HLDVT 2009, and Guest Editor of IEEE Design & Test of Computers (D&T), Journal of Electronic Testing (JETTA) and International Journal of Parallel Programming (IJPP). He is a senior member of ACM and a senior member of IEEE.
Sanjay Ranka is a Professor in the Department of Computer Information Science and Engineering at University of Florida. His current research interests are energy efficient computing, high performance computing, data mining and informatics. Most recently he was the Chief Technology Officer at Paramark where he developed real-time optimization software for optimizing marketing campaigns. Sanjay has also held positions as a tenured faculty member at Syracuse University and as a researcher/visitor at IBM T.J. Watson Research Labs and Hitachi America Limited. Sanjay earned his Ph.D. (Computer Science) from the University of Minnesota and a B. Tech. in Computer Science from IIT, Kanpur, India. He has coauthored two books: Elements of Neural Networks (MIT Press) and Hypercube Algorithm (Springer Verlag), 75 journal articles and 125 refereed conference articles. His recent work has received a student best paper award at ACM-BCB 2010, best paper runner up award at KDD-2009, a nomination for the Robbins Prize for the best paper in journal of Physics in Medicine and Biology for 2008, and a best paper award at ICN 2007. He is a fellow of the IEEE and AAAS and a member of IFIP Committee on System Modeling and Optimization. He is the associate Editor-in-Chief of the Journal of Parallel and Distributed Computing and an associate editor for IEEE Transactions onParallel and Distributed Computing, IEEE Transactions on Computers, Sustainable Computing: Systems and Informatics, Knowledge and Information Systems, and International Journal of Computing. He was a past member of the Parallel Compiler Runtime Consortium, the Message Passing Initiative Standards Committee and Technical Committee on Parallel Processing. He was the program chair for 2010 International Conference on Contemporary Computing and co-general chair for 2009 International Conference on Data Mining and 2010 International Conference on Green Computing.
Introduction.- Modeling of Real-Time and Reconfigurable Systems.- Dynamic Cache Reconfiguration in Real-Time Systems.- Energy Optimization of Cache Hierarchy in Multicore Real-Time Systems.- Energy-Aware Scheduling with Dynamic Voltage Scaling.- System-wide Energy Optimization with DVS and DCR.- Temperature- and Energy-Constrained Scheduling.- Conclusions.
Introduction.- Modeling of Real-Time and Reconfigurable Systems.- Dynamic Cache Reconfiguration in Real-Time Systems.- Energy Optimization of Cache Hierarchy in Multicore Real-Time Systems.- Energy-Aware Scheduling with Dynamic Voltage Scaling.- System-wide Energy Optimization with DVS and DCR.- Temperature- and Energy-Constrained Scheduling.- Conclusions.
Introduction.- Modeling of Real-Time and Reconfigurable Systems.- Dynamic Cache Reconfiguration in Real-Time Systems.- Energy Optimization of Cache Hierarchy in Multicore Real-Time Systems.- Energy-Aware Scheduling with Dynamic Voltage Scaling.- System-wide Energy Optimization with DVS and DCR.- Temperature- and Energy-Constrained Scheduling.- Conclusions.
Introduction.- Modeling of Real-Time and Reconfigurable Systems.- Dynamic Cache Reconfiguration in Real-Time Systems.- Energy Optimization of Cache Hierarchy in Multicore Real-Time Systems.- Energy-Aware Scheduling with Dynamic Voltage Scaling.- System-wide Energy Optimization with DVS and DCR.- Temperature- and Energy-Constrained Scheduling.- Conclusions.