132,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Broschiertes Buch

Short description/annotation
A comprehensive introductory graduate textbook illustrating specialised topics in current physics.
Main description
The Physics of Plasmas provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas. A particular strength of the book is its discussion of the various models used to describe plasma physics and the relationships between them. These include particle orbit theory, fluid equations, ideal and resistive magnetohydrodynamics, wave equations and kinetic theory.…mehr

Produktbeschreibung
Short description/annotation
A comprehensive introductory graduate textbook illustrating specialised topics in current physics.

Main description
The Physics of Plasmas provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas. A particular strength of the book is its discussion of the various models used to describe plasma physics and the relationships between them. These include particle orbit theory, fluid equations, ideal and resistive magnetohydrodynamics, wave equations and kinetic theory. The reader will gain a firm grounding in the fundamentals, and develop this into an understanding of some of the more specialised topics. Throughout the text, there is an emphasis on the physical interpretation of plasma phenomena. Exercises are provided throughout. Advanced undergraduate and graduate students of physics, applied mathematics, astronomy and engineering will find a clear but rigorous explanation of the fundamental properties of plasmas with minimal mathematical formality. This book will also appeal to research physicists, nuclear and electrical engineers.

Table of contents:
1. Introduction; 2. Particle orbit theory; 3. Macroscopic equations; 4. Ideal magnetohydrodynamics; 5. Resistive magnetohydrodynamics; 6. Waves in unbounded homogeneous plasmas; 7. Collisionless kinetic theory; 8. Collisional kinetic theory; 9. Plasma radiation; 10. Non-linear plasma physics; 11. Aspects of inhomogeneous plasmas; 12. The classical theory of plasmas.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Before retiring in 2001, T. J. M. Boyd was Professor of Physics at the University of Essex. He has taught plasma physics to graduates and undergraduates all over the world.