Elastic wave propagation applies widely across engineering. This presents continuum mechanics, stress and strain tensors, and the derivation of equations for elastic wave motions with Green's function. The MUSIC algorithm is used to address inverse scattering problems, and the companion website provides software with detailed solutions.
Elastic wave propagation applies widely across engineering. This presents continuum mechanics, stress and strain tensors, and the derivation of equations for elastic wave motions with Green's function. The MUSIC algorithm is used to address inverse scattering problems, and the companion website provides software with detailed solutions.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Terumi Touhei is a Professor at the Tokyo University of Science, with extensive experience of teaching graduate students.
Inhaltsangabe
1. Introduction. 2. Basic properties of solution for elastic wave equation and representation theorem. 3. Elastic wave propagation in 3D elastic half-space. 4. Analysis of scattering problems by means of Green's functions. Appendix A. Tensor algebra for continuum mechanics. Appendix B. Fourier transform, Fourier-Hankel transform, and Dirac delta function. Appendix C. Green's function in the wavenumber domain. Appendix D. Comparison of Green's function obtained using various computational methods. Appendix E. Music algorithm for detecting location of point-like scatters. Answers. References.
1. Introduction. 2. Basic properties of solution for elastic wave equation and representation theorem. 3. Elastic wave propagation in 3D elastic half-space. 4. Analysis of scattering problems by means of Green's functions. Appendix A. Tensor algebra for continuum mechanics. Appendix B. Fourier transform, Fourier-Hankel transform, and Dirac delta function. Appendix C. Green's function in the wavenumber domain. Appendix D. Comparison of Green's function obtained using various computational methods. Appendix E. Music algorithm for detecting location of point-like scatters. Answers. References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826