117,69 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
0 °P sammeln
  • Broschiertes Buch

Selective Laser Melting (SLM), also referred to as Laser Powder Bed Fusion (L-PBF), offers significant advantages for the manufacturing of complex, high-quality parts. However, its market share is still small compared to conventional manufacturing technologies. Major drawbacks hindering an industrial ramp-up are low productivity, high part costs and issues with quality and reproducibility. Comprehensive research has been done to overcome these challenges, but little attention has been paid to addressing them by optimizing the laser beam profile. Therefore, the author examines the effect of the…mehr

Produktbeschreibung
Selective Laser Melting (SLM), also referred to as Laser Powder Bed Fusion (L-PBF), offers significant advantages for the manufacturing of complex, high-quality parts. However, its market share is still small compared to conventional manufacturing technologies. Major drawbacks hindering an industrial ramp-up are low productivity, high part costs and issues with quality and reproducibility. Comprehensive research has been done to overcome these challenges, but little attention has been paid to addressing them by optimizing the laser beam profile. Therefore, the author examines the effect of the laser beam profile on the productivity and process stability through both numerical and experimental investigations. The results show clear advantages an optimized laser beam profile offers.

Autorenporträt
Tim Marten Wischeropp studied mechanical engineering at the Technical University of Hamburg (TUHH), Germany. After graduating with a focus on product development, he worked as a research fellow at the Institute of Laser and System Technologies (TUHH) as well as group leader for 3D printing at the LZN Laser Zentrum Nord GmbH. Since 2018 he leads the design department at the Fraunhofer Institution for Additive Manufacturing Technologies IAPT.