60,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Broschiertes Buch

Red Sprites and Blue Jets are two different types of recently discovered optical flashes ob- served above large thunderstorm systems. Sprites are luminous glows occurring at altitudes typically ranging from approximately 50 to 90 km. In video they exhibit a red color at their top which gradually changes to blue at lower altitudes. Sprites may occur singly or in clusters of two or more. The lateral extent of "unit" sprites is typically 5-10 km and they endure for several milliseconds. Jets are upward moving (approximately 100 km/s) highly collimated beams of luminosity, emanating from the tops…mehr

Produktbeschreibung
Red Sprites and Blue Jets are two different types of recently discovered optical flashes ob- served above large thunderstorm systems. Sprites are luminous glows occurring at altitudes typically ranging from approximately 50 to 90 km. In video they exhibit a red color at their top which gradually changes to blue at lower altitudes. Sprites may occur singly or in clusters of two or more. The lateral extent of "unit" sprites is typically 5-10 km and they endure for several milliseconds. Jets are upward moving (approximately 100 km/s) highly collimated beams of luminosity, emanating from the tops of thunderclouds, extending up to approximately 50 km altitude and exhibiting a primarily blue color. We propose that sprites result from large electric field transients capable of causing electron heating, breakdown ionization and excitation of optical emissions at mesospheric altitudes following the removal of thundercloud charge by a cloud-to-ground discharge. Depending on the history of charge accumulation and removal, and the distribution of ambient atmospheric conductivity, the breakdown region may have the shape of vertically oriented ionization column(s). Results of a two-dimensional and self consistent quasi-electrostatic (QE) model indicate that most of the observed features of sprites can be explained in terms of the formation and self-driven propagation of streamer type channels of breakdown ionization. Comparison of the optical emission intensities of the 1st and 2nd positive bands of N2, Meinel and 1st negative bands of N2(+) and the 1st negative band of O2(+) demonstrates that the 1st positive band of N2 is the dominant optical emission in the altitude range approximately 50-90 km, which accounts for the observed red color of sprites.