Building on the author's more than 35 years of teaching experience, Modeling and Analysis of Stochastic Systems, Third Edition, covers the most important classes of stochastic processes used in the modeling of diverse systems. For each class of stochastic process, the text includes its definition, characterization, applications, transient
Building on the author's more than 35 years of teaching experience, Modeling and Analysis of Stochastic Systems, Third Edition, covers the most important classes of stochastic processes used in the modeling of diverse systems. For each class of stochastic process, the text includes its definition, characterization, applications, transientHinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
IntroductionWhat in the World is a Stochastic Process?How to Characterize a Stochastic ProcessWhat Do We Do with a Stochastic Process?Discrete-Time Markov Chains: Transient BehaviourDefinition and CharacterizationExamplesDTMCs in Other FieldsMarginal DistributionsOccupancy TimesComputation of Matrix PowersModeling ExercisesComputational ExercisesConceptual ExercisesDiscrete-Time Markov Chains: First Passage TimesDefinitionsCumulative Distribution Function of TAbsorption ProbabilitiesExpectation of TGenerating Function and Higher Moments of TComputational ExercisesConceptual ExercisesDiscrete-Time Markox Chains: Limiting BehaviourExploring the Limiting Behaviour by ExamplesClassification of StatesDetermining Recurrence and Transience: Finite DTMCsDetermining Recurrence and Transience: Infinite DTMScLimiting Behaviour of Irreducible DTMCsExamples: Limiting Behaviour of Infinite State-Space Irreducible DTMCsLimiting Behaviour of Reducible DTMCsDTMCs with Costs and RewardsReversibilityComputational ExercisesConceptual ExercisesPoisson ProcessesExponential DistributionsPoisson Process: DefinitionsEvent Times in a Poisson ProcessSuperposition and Splitting of Poisson ProcessesNon-Homogeneous Poisson ProcessCompound Poisson ProcessComputational ExercisesConceptual ExercisesContinuous-Time Markov ChainsDefinitions and Sample Path PropertiesExamplesCTMCs in Other FieldsTransient Behaviour: Marginal DistributionTransient Behaviour: Occupancy TimesComputation of P(t): Finite State-SpaceComputation of P(t): Infinite State-SpaceFirst-Passage TimesExploring the Limiting Behaviour by ExamplesClassification of StatesLimiting Behaviour of Irre
IntroductionWhat in the World is a Stochastic Process?How to Characterize a Stochastic ProcessWhat Do We Do with a Stochastic Process?Discrete-Time Markov Chains: Transient BehaviourDefinition and CharacterizationExamplesDTMCs in Other FieldsMarginal DistributionsOccupancy TimesComputation of Matrix PowersModeling ExercisesComputational ExercisesConceptual ExercisesDiscrete-Time Markov Chains: First Passage TimesDefinitionsCumulative Distribution Function of TAbsorption ProbabilitiesExpectation of TGenerating Function and Higher Moments of TComputational ExercisesConceptual ExercisesDiscrete-Time Markox Chains: Limiting BehaviourExploring the Limiting Behaviour by ExamplesClassification of StatesDetermining Recurrence and Transience: Finite DTMCsDetermining Recurrence and Transience: Infinite DTMScLimiting Behaviour of Irreducible DTMCsExamples: Limiting Behaviour of Infinite State-Space Irreducible DTMCsLimiting Behaviour of Reducible DTMCsDTMCs with Costs and RewardsReversibilityComputational ExercisesConceptual ExercisesPoisson ProcessesExponential DistributionsPoisson Process: DefinitionsEvent Times in a Poisson ProcessSuperposition and Splitting of Poisson ProcessesNon-Homogeneous Poisson ProcessCompound Poisson ProcessComputational ExercisesConceptual ExercisesContinuous-Time Markov ChainsDefinitions and Sample Path PropertiesExamplesCTMCs in Other FieldsTransient Behaviour: Marginal DistributionTransient Behaviour: Occupancy TimesComputation of P(t): Finite State-SpaceComputation of P(t): Infinite State-SpaceFirst-Passage TimesExploring the Limiting Behaviour by ExamplesClassification of StatesLimiting Behaviour of Irre
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826