Schade – dieser Artikel ist leider ausverkauft. Sobald wir wissen, ob und wann der Artikel wieder verfügbar ist, informieren wir Sie an dieser Stelle.
  • Format: PDF

Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being…mehr

Produktbeschreibung
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.
Autorenporträt
Dr. P. A. Lakshminarayanan (born 1950) studied at Indian Institute of Technology Madras for his B. Tech, M.S. and Ph.D. degrees. He worked at Loughborough University of Technology and Kirloskar Oil Engines Ltd. for about five and twenty years, respectively, before moving to Ashok Leyland in 2002 to head the Engine R&D. From 2011 till 2019, he was the CTO, and the Technical Adviser at Simpson and Co. Ltd. Now, he is an adjunct professor at IIT Kanpur. With his teams, he has developed more than eight diesel and CNG engine platforms and 150 engine types commercially successful for efficiency and cost effectiveness. Two engine designs received prizes from the Institute of Directors (India). Twelve ideas were patented during the development of engines over 40 years. He has authored 54 research papers in journals and conferences of international repute. Four of them received the prizes for integrity and quality of contents from the SAE (Arch Colwell Award), Combustion Society (India), AVL (Graz) and AVL (India) in 1983, 1993, 2005 and 2011, respectively. He has coauthored two books titled "Modeling Diesel Combustion" (Springer 2010) and "Critical Component Wear of Parts in heavy Duty Engines" (John Wiley 2011). He has coedited a handbook "Design and Development of Heavy Duty Diesel Engines" (Springer, 2020). Now, he is editing his fourth book "Thermal Management of Engines for Performance and Emissions" which is due in 2021. He is elected to the fellowships of SAE (2009), INAE (2013) and ISEES (2018). Dr. Yogesh V. Aghav received B. E. and M. Tech. degrees from VIT Pune and IIT Madras, respectively. His Doctoral degree is from IIT Delhi for his research work on heat release in diesel engines.  Currently, he is the associate vice president of the corporate Research and Engineering, Kirloskar Oil Engines Ltd., Pune, with responsibilities for the performance, emissions, NVH, and development of internal combustion engines running on diesel and alternative fuels like natural gas and biodiesel. For two years, he served FEV, Pune, and helped to found the organization.  For the last 25 years, he has lead teams to develop many engines of swept volumes ranging from 300 c.c. to 32-liter applied to agriculture, off-highway, power generation, construction equipment, marine, and defense. He has published more than 50 research papers in ASME, SAE, and IMechE journals. He is associated with the boards of studies of VIT and MITADT, Pune. He advises the Universities and takes part in faculty development. He is a member of the SAE India. Prof. Rolf Reitz's research interests include internal combustion engines and sprays.  He is former director of the Engine Research Center and is Emeritus Wisconsin Distinguished Professor of Mechanical Engineering at the University of Wisconsin-Madison.  Before joining UW-Madison he spent six years at the GM Research Laboratories, three years as a research staff member at PrincetonUniversity, and two years as a research scientist at the Courant Institute of Mathematical Sciences, New York University.   He received his Ph.D. in Mechanical and Aerospace Engineering from Princeton University in 1978.  Professor Reitz is a Fellow member of SAE and ASME and he serves as a consultant to many industries through his consulting company, Wisconsin Engine Research Consultants.  He is Editor (Americas) and co-founder of the International Journal of Engine Research and is past-Chairman of the Institute of Liquid Atomization and Spraying Systems - North and South America.  He and his group have won major research awards, and he has co-authored over 550 technical papers on engine research.  Yu Shi received his Ph.D. in Mechanical Engineering from the Engine Research Center at the University of Wisconsin-Madison, where he specialized in computational optimization of internal combustion engines. After finishing his Ph.D. in 2009,he worked as a postdoctoral associate in the Department of Chemical Engineering at the Massachusetts Institute of Technology, where he contributed to the field of accelerated reactive flow computations using heterogeneous computational architectures. He is currently Senior Data Scientist with the Phillips 66 Company based in Houston, Texas, where he applies advanced machine learning to business analytics. Dr. Haiwen Ge received B.Eng. and M.Eng. in Engineering Thermophysics from University of Science and Technology of China in 1999 and 2002, respectively. In 2006, he received Doctor of Science in Physical Chemistry from University of Heidelberg, Germany. He joined the Engine Research Center, University of Wisconsin-Madison as a postdoctoral fellow in 2006. Since 2010, he worked for the Ford Motor Company as a resident engineer. In 2013, he joined the Fiat-Chrysler Automobiles (FCA), where he was the Senior Technical Specialist in Combustion Development and Technical Lead in 3D Combustion CFD. In 2016-2017, he was a Senior Combustion CFD Engineer of John Deere. In 2017, he joined the Department of Mechanical Engineering, Texas Tech University as an instructor. He has published one monograph, two book chapters, 68 peer-reviewed publications, and 67 conference papers. Mr. Anirudh Jaipuria completed his B.Tech in Mechanical Engineering from National Institute of Technology-Surat, India after which he joined Ashok Leyland Ltd. as Deputy Manager where he lead the development of the BS-IV Heavy-duty Diesel engine family. Following that he completed his Master's in Combustion Engines from RWTH Aachen, Germany. In 2012, he joined MAN Diesel & Turbo as Simulation Engineer responsible for Valvetrain development for 4-Stroke Large diesel engines. Since 2015, he has been with BMW M-GmbH, Munich as SE-Team leader and technical specialist responsible for all dynamic simulations and drivetrain development for high-performance sports cars. He has five publicationsand has been a speaker at two international conferences.