Addressing issues that have plagued researchers throughout the last decade, this book provides new insights into the many existing problems in statistical modeling and offers several alternative strategies to approach these problems. Emphasizing the importance of statistical thinking behind all analyses, the authors use specific examples in epidemiology to illustrate different model specifications that can imply different sets of causal relationships between variables. Each model is interpreted with regard to the context of implicit or explicit causal relationships. The authors also use vector…mehr
Addressing issues that have plagued researchers throughout the last decade, this book provides new insights into the many existing problems in statistical modeling and offers several alternative strategies to approach these problems. Emphasizing the importance of statistical thinking behind all analyses, the authors use specific examples in epidemiology to illustrate different model specifications that can imply different sets of causal relationships between variables. Each model is interpreted with regard to the context of implicit or explicit causal relationships. The authors also use vector geometry where applicable to provide an intuitive understanding of important statistical concepts.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Dr Yu-Kang Tu is a Senior Clinical Research Fellow in the Division of Biostatistics, School of Medicine, and in the Leeds Dental Institute, University of Leeds, Leeds, UK. He was a visiting Associate Professor to the National Taiwan University, Taipei, Taiwan. First trained as a dentist and then an epidemiologist, he has published extensively in dental, medical, epidemiological and statistical journals. He is interested in developing statistical methodologies to solve statistical and methodological problems such as mathematical coupling, regression to the mean, collinearity and the reversal paradox. His current research focuses on applying latent variables methods, e.g. structural equation modeling, latent growth curve modelling, and lifecourse epidemiology. More recently, he has been working on applying partial least squares regression to epidemiological data. Prof Mark S Gilthorpe is professor of Statistical Epidemiology, Division of Biostatistics, School of Medicine, University of Leeds, Leeds, UK. Having completed a single honours degree in mathematical Physics (University of Nottingham), he undertook a PhD in Mathematical Modelling (University of Aston in Birmingham), before initially embarking upon a career as self-employed Systems and Data Analyst and Computer Programmer, and eventually becoming an academic in biomedicine. Academic posts include systems and data analyst of UK regional routine hospital data in the Department of Public Health and Epidemiology, University of Birmingham; Head of Biostatistics at the Eastman Dental Institute, University College London; and founder and Head of the Division of Biostatistics, School of Medicine, University of Leeds. His research focus has persistently been that of the development and promotion of robust and sophisticated modelling methodologies for non-experimental (and sometimes large and complex) observational data within biomedicine, leading to extensive publications in
Inhaltsangabe
Introduction. Vector Geometry of Linear Models for Epidemiologists. Path Diagrams and Directed Acyclic Graphs. Mathematical Coupling and Regression to the Mean in the Relation between Change and Initial Value. Analysis of Change in Pre-/Post-Test Studies. Collinearity and Multicollinearity. Is 'Reversal Paradox' a Paradox? Testing Statistical Interaction. Finding Growth Trajectories in Lifecourse Research. Partial Least Squares Regression for Lifecourse Research. Concluding Remarks. References. Index.
Introduction. Vector Geometry of Linear Models for Epidemiologists. Path Diagrams and Directed Acyclic Graphs. Mathematical Coupling and Regression to the Mean in the Relation between Change and Initial Value. Analysis of Change in Pre-/Post-Test Studies. Collinearity and Multicollinearity. Is 'Reversal Paradox' a Paradox? Testing Statistical Interaction. Finding Growth Trajectories in Lifecourse Research. Partial Least Squares Regression for Lifecourse Research. Concluding Remarks. References. Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826