Common Waveform Analysis , which will be of interest to both electrical engineers and mathematicians, applies the classic Fourier analysis to common waveforms. The following questions are answered: Can a signal be considered a superposition of common waveforms with different frequencies? | How can a signal be decomposed into a series of common waveforms? | How can a signal best be approximated using finite common waveforms? | How can a combination of common waveforms that equals a given signal at N uniform points be found? | Can common waveforms be used in techniques that have traditionally…mehr
Common Waveform Analysis, which will be of interest to both electrical engineers and mathematicians, applies the classic Fourier analysis to common waveforms. The following questions are answered:
Can a signal be considered a superposition of common waveforms with different frequencies?
How can a signal be decomposed into a series of common waveforms?
How can a signal best be approximated using finite common waveforms?
How can a combination of common waveforms that equals a given signal at N uniform points be found?
Can common waveforms be used in techniques that have traditionally been based on sine-cosine functions?
Common Waveform Analysis represents the most advanced research available to research scientists and scholars working in fields related to the area.
Produktdetails
Produktdetails
The International Series on Asian Studies in Computer and Information Science 9
The International Series on Asian Studies in Computer and Information Science 9
Verlag: Springer / Springer US / Springer, Berlin
Artikelnr. des Verlages: 978-1-4613-7052-9
Softcover reprint of the original 1st ed. 2000
Seitenzahl: 172
Erscheinungstermin: 4. Oktober 2012
Englisch
Abmessung: 235mm x 155mm x 10mm
Gewicht: 272g
ISBN-13: 9781461370529
ISBN-10: 1461370523
Artikelnr.: 36937464
Herstellerkennzeichnung
Books on Demand GmbH
In de Tarpen 42
22848 Norderstedt
info@bod.de
040 53433511
Inhaltsangabe
1 ABC of Number Theory.- 1.1 Divisibility.- 1.2 Arithmetical Functions.- 1.3 Dirichlet Multiplication.- 1.4 Dirichlet Series.- 2 Square Wave Analysis.- 2.1 Square Wave System and its Basic Properties.- 2.2 Biorthogonal Functions and Square Wave Series.- 2.3 Orthogonalization and the Best Approximation.- 2.4 An Example of Applications.- 3 Triangular Wave Analysis and Trapezoidal Wave Analysis.- 3.1 WASCMFC Functions and Practical Examples.- 3.2 WASCMFC Function Basis, Biorthogonal Basis and Or thonormalized Basis.- 3.3 Basis and Coordinate Transforms.- 3.4 Discrete Triangular Wave Transform and Trapezoidal Wave Transform.- 4 Frequency Analysis Based on General Periodic Functionds.- 4.1 A Frequency System in L2[??,?].- 4.2 A Frequency System in L2odd[??, +?].- 4.3 A Complete System in L2odd[??, +?].- 4.4 An Unconditional Basis in L2odd[??, +?].- 4.5 A Combinative Frequency System in L2[??,?].- 4.6 A Frequency Transform in L2(R).- 5 Main Relations and Basic Techniques.- 5.1 Dirichlet Multiplication and a Related Formula.- 5.2 Relations between Sine Waves and Common Waveforms.- 5.3 Relations between Two Waveforms.- 5.4 Common Waveform Series.- 5.5 Common Waveform Transform.- 5.6 Discrete Transform for Common Waveform.- 5.7 Techniques of Common Waveform Analysis.
1 ABC of Number Theory.- 1.1 Divisibility.- 1.2 Arithmetical Functions.- 1.3 Dirichlet Multiplication.- 1.4 Dirichlet Series.- 2 Square Wave Analysis.- 2.1 Square Wave System and its Basic Properties.- 2.2 Biorthogonal Functions and Square Wave Series.- 2.3 Orthogonalization and the Best Approximation.- 2.4 An Example of Applications.- 3 Triangular Wave Analysis and Trapezoidal Wave Analysis.- 3.1 WASCMFC Functions and Practical Examples.- 3.2 WASCMFC Function Basis, Biorthogonal Basis and Or thonormalized Basis.- 3.3 Basis and Coordinate Transforms.- 3.4 Discrete Triangular Wave Transform and Trapezoidal Wave Transform.- 4 Frequency Analysis Based on General Periodic Functionds.- 4.1 A Frequency System in L2[??,?].- 4.2 A Frequency System in L2odd[??, +?].- 4.3 A Complete System in L2odd[??, +?].- 4.4 An Unconditional Basis in L2odd[??, +?].- 4.5 A Combinative Frequency System in L2[??,?].- 4.6 A Frequency Transform in L2(R).- 5 Main Relations and Basic Techniques.- 5.1 Dirichlet Multiplication and a Related Formula.- 5.2 Relations between Sine Waves and Common Waveforms.- 5.3 Relations between Two Waveforms.- 5.4 Common Waveform Series.- 5.5 Common Waveform Transform.- 5.6 Discrete Transform for Common Waveform.- 5.7 Techniques of Common Waveform Analysis.
Rezensionen
From the reviews: "In the book ... Wei and Zhang have selected and presented the analysis of square, triangular, and trapezoidal waves with sufficient details and the related mathematical theories behind the subjects. ... the work is impressive in a mathematical sense. ... Square, triangular, and trapezoidal waveform analysis can be useful in many practical engineering and scientific environments, and this 160-page work is a good reference source for such a specific area." (Nihal Kularatna, IEEE Circuits & Devices Magazine, Vol. 21 (2), 2005)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826
Wir verwenden Cookies und ähnliche Techniken, um unsere Website für Sie optimal zu gestalten und Ihr Nutzererlebnis fortlaufend zu verbessern. Ihre Einwilligung durch Klicken auf „Alle Cookies akzeptieren“ können Sie jederzeit widerrufen oder anpassen. Bei „Nur notwendige Cookies“ werden die eingesetzten Techniken, mit Ausnahme derer, die für den Betrieb der Seite unerlässlich sind, nicht aktiviert. Weitere Informationen finden Sie unter „Datenschutzerklärung“.