Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In other words, 3 2 – 2 3 = 1 is the only solution of the equation x p – y q = 1 in integers x, y, p, q with xy ≠ 0 and p, q ≥ 2. In this book we give a complete and (almost) self-contained exposition of Mihăilescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We…mehr
In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In other words, 32 – 23 = 1 is the only solution of the equation xp – yq = 1 in integers x, y, p, q with xy ≠ 0 and p, q ≥2.
In this book we give a complete and (almost) self-contained exposition of Mihăilescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume a very modest background:a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.
An Historical Account.- Even Exponents.- Cassels' Relations.- Cyclotomic Fields.- Dirichlet L-Series and Class Number Formulas.- Higher Divisibility Theorems.- Gauss Sums and Stickelberger's Theorem.- Mihăilescu’s Ideal.- The Real Part of Mihăilescu’s Ideal.- Cyclotomic units.- Selmer Group and Proof of Catalan's Conjecture.- The Theorem of Thaine.- Baker's Method and Tijdeman's Argument.- Appendix A: Number Fields.- Appendix B: Heights.- Appendix C: Commutative Rings, Modules, Semi-Simplicity.- Appendix D: Group Rings and Characters.- Appendix E: Reduction and Torsion of Finite G-Modules.- Appendix F: Radical Extensions.
An Historical Account.- Even Exponents.- Cassels' Relations.- Cyclotomic Fields.- Dirichlet L-Series and Class Number Formulas.- Higher Divisibility Theorems.- Gauss Sums and Stickelberger's Theorem.- Mihailescu's Ideal.- The Real Part of Mihailescu's Ideal.- Cyclotomic units.- Selmer Group and Proof of Catalan's Conjecture.- The Theorem of Thaine.- Baker's Method and Tijdeman's Argument.- Appendix A: Number Fields.- Appendix B: Heights.- Appendix C: Commutative Rings, Modules, Semi-Simplicity.- Appendix D: Group Rings and Characters.- Appendix E: Reduction and Torsion of Finite G-Modules.- Appendix F: Radical Extensions.
An Historical Account.- Even Exponents.- Cassels' Relations.- Cyclotomic Fields.- Dirichlet L-Series and Class Number Formulas.- Higher Divisibility Theorems.- Gauss Sums and Stickelberger's Theorem.- Mihăilescu’s Ideal.- The Real Part of Mihăilescu’s Ideal.- Cyclotomic units.- Selmer Group and Proof of Catalan's Conjecture.- The Theorem of Thaine.- Baker's Method and Tijdeman's Argument.- Appendix A: Number Fields.- Appendix B: Heights.- Appendix C: Commutative Rings, Modules, Semi-Simplicity.- Appendix D: Group Rings and Characters.- Appendix E: Reduction and Torsion of Finite G-Modules.- Appendix F: Radical Extensions.
An Historical Account.- Even Exponents.- Cassels' Relations.- Cyclotomic Fields.- Dirichlet L-Series and Class Number Formulas.- Higher Divisibility Theorems.- Gauss Sums and Stickelberger's Theorem.- Mihailescu's Ideal.- The Real Part of Mihailescu's Ideal.- Cyclotomic units.- Selmer Group and Proof of Catalan's Conjecture.- The Theorem of Thaine.- Baker's Method and Tijdeman's Argument.- Appendix A: Number Fields.- Appendix B: Heights.- Appendix C: Commutative Rings, Modules, Semi-Simplicity.- Appendix D: Group Rings and Characters.- Appendix E: Reduction and Torsion of Finite G-Modules.- Appendix F: Radical Extensions.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Shop der buecher.de GmbH & Co. KG i.I. Bürgermeister-Wegele-Str. 12, 86167 Augsburg Amtsgericht Augsburg HRA 13309