63,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
32 °P sammeln
  • Broschiertes Buch

As the military use of unmanned aerial vehicles increases, a growing need for novel strategies to control these systems exists. One such method for controlling many unmanned aerial vehicles simultaneously is the through the use of swarm algorithms. This research explores a swarm robotic algorithm developed by Kadrovach implemented on Pioneer Robots in a real-world environment. An adaptation of his visual sensor is implemented using stereo vision as the primary method of sensing the environment. The swarm members are prohibited from explicitly communicating other than passively through the…mehr

Produktbeschreibung
As the military use of unmanned aerial vehicles increases, a growing need for novel strategies to control these systems exists. One such method for controlling many unmanned aerial vehicles simultaneously is the through the use of swarm algorithms. This research explores a swarm robotic algorithm developed by Kadrovach implemented on Pioneer Robots in a real-world environment. An adaptation of his visual sensor is implemented using stereo vision as the primary method of sensing the environment. The swarm members are prohibited from explicitly communicating other than passively through the environment. The resulting implementation produces a communication free swarming algorithm. The algorithm is tested for performance of the visual sensor, performance of the algorithm against stationary targets, and finally, performance against dynamic targets. The results show expected behavior of the swarm model as implemented on the Pioneer robots providing a foundation for future research in swarm algorithms.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.