Produktbild: Gaussian Measures in Hilbert Space

Gaussian Measures in Hilbert Space Construction and Properties

197,99 €

inkl. MwSt, Versandkostenfrei

Lieferung nach Hause

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

26.02.2020

Verlag

ISTE Ltd and John Wiley & Sons Inc

Seitenzahl

272

Maße (L/B/H)

23,6/15,7/2,3 cm

Gewicht

594 g

Sprache

Englisch

ISBN

978-1-78630-267-0

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

26.02.2020

Verlag

ISTE Ltd and John Wiley & Sons Inc

Seitenzahl

272

Maße (L/B/H)

23,6/15,7/2,3 cm

Gewicht

594 g

Sprache

Englisch

ISBN

978-1-78630-267-0

Unsere Kundinnen und Kunden meinen

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Unsere Kundinnen und Kunden meinen

0 Bewertungen filtern

Die Leseprobe wird geladen.
  • Produktbild: Gaussian Measures in Hilbert Space
  • Foreword ix

    Preface xiii

    Introduction xv

    Abbreviations and Notation xix

    Chapter 1. Gaussian Measures in Euclidean Space 1

    1.1. The change of variables formula 1

    1.2. Invariance of Lebesgue measure 4

    1.3. Absence of invariant measure in infinite-dimensional Hilbert space 9

    1.4. Random vectors and their distributions 10

    1.4.1. Random variables 11

    1.4.2. Random vectors 12

    1.4.3. Distributions of random vectors 14

    1.5. Gaussian vectors and Gaussian measures 17

    1.5.1. Characteristic functions of Gaussian vectors 17

    1.5.2. Expansion of Gaussian vector 20

    1.5.3. Support of Gaussian vector 22

    1.5.4. Gaussian measures in Euclidean space 23

    Chapter 2. Gaussian Measure in l2 as a Product Measure 27

    2.1. Space R¿ 27

    2.1.1. Metric on R¿ 27

    2.1.2. Borel and cylindrical sigma-algebras coincide 30

    2.1.3. Weighted l2 space 31

    2.2. Product measure in R¿ 34

    2.2.1. Kolmogorov extension theorem 34

    2.2.2. Construction of product measure on B(R¿) 36

    2.2.3. Properties of product measure 38

    2.3. Standard Gaussian measure in R¿ 42

    2.3.1. Alternative proof of the second part of theorem 2.4 45

    2.4. Construction of Gaussian measure in l2 46

    Chapter 3. Borel Measures in Hilbert Space 51

    3.1. Classes of operators in H 51

    3.1.1. Hilbert-Schmidt operators 52

    3.1.2. Polar decomposition 55

    3.1.3. Nuclear operators 57

    3.1.4. S-operators 62

    3.2. Pettis and Bochner integrals 68

    3.2.1. Weak integral 68

    3.2.2. Strong integral 69

    3.3. Borel measures in Hilbert space 75

    3.3.1. Weak and strong moments 75

    3.3.2. Examples of Borel measures 78

    3.3.3. Boundedness of moment form 83

    Chapter 4. Construction of Measure by its Characteristic Functional 89

    4.1. Cylindrical sigma-algebra in normed space 89

    4.2. Convolution of measures 93

    4.3. Properties of characteristic functionals in H 96

    4.4. S-topology in H 99

    4.5. Minlos-Sazonov theorem 102

    Chapter 5. Gaussian Measure of General Form 111

    5.1. Characteristic functional of Gaussian measure 111

    5.2. Decomposition of Gaussian measure and Gaussian random element 114

    5.3. Support of Gaussian measure and its invariance 117

    5.4. Weak convergence of Gaussian measures 125

    5.5. Exponential moments of Gaussian measure in normed space 129

    5.5.1. Gaussian measures in normed space 129

    5.5.2. Fernique's theorem 133

    Chapter 6. Equivalence and Singularity of Gaussian Measures 143

    6.1. Uniformly integrable sequences 143

    6.2. Kakutani's dichotomy for product measures on R¿ 145

    6.2.1. General properties of absolutely continuous measures 145

    6.2.2. Kakutani's theorem for product measures 148

    6.2.3. Dichotomy for Gaussian product measures 152

    6.3. Feldman-Hájek dichotomy for Gaussian measures on H 155

    6.3.1. The case where Gaussian measures have equal correlation operators 155

    6.3.2. Necessary conditions for equivalence of Gaussian measures 158

    6.3.3. Criterion for equivalence of Gaussian measures 165

    6.4. Applications in statistics 169

    6.4.1. Estimation and hypothesis testing for mean of Gaussian random element 169

    6.4.2. Estimation and hypothesis testing for correlation operator of centered Gaussian random element 173

    Chapter 7. Solutions 179

    7.1. Solutions for Chapter 1 179

    7.2. Solutions for Chapter 2 193

    7.2.1. Generalized Kolmogorov extension theorem 196

    7.3. Solutions for Chapter 3 202

    7.4. Solutions for Chapter 4 211

    7.5. Solutions for Chapter 5 217

    7.6. Solutions for Chapter 6 227

    Summarizing Remarks 235

    References 239

    Index 241