• Produktbild: Introduction to Convective Heat Transfer
  • Produktbild: Introduction to Convective Heat Transfer

Introduction to Convective Heat Transfer A Software-Based Approach Using Maple and MATLAB

161,99 €

inkl. MwSt, Versandkostenfrei

Lieferung nach Hause

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

18.04.2023

Verlag

John Wiley & Sons

Seitenzahl

800

Maße (L/B/H)

28,6/22,1/4,6 cm

Gewicht

1872 g

Auflage

1. Auflage

Sprache

Englisch

ISBN

978-1-119-76676-6

Beschreibung

Details

Einband

Gebundene Ausgabe

Erscheinungsdatum

18.04.2023

Verlag

John Wiley & Sons

Seitenzahl

800

Maße (L/B/H)

28,6/22,1/4,6 cm

Gewicht

1872 g

Auflage

1. Auflage

Sprache

Englisch

ISBN

978-1-119-76676-6

Herstelleradresse

Produktsicherheitsverantwortliche/r
Europaallee 1
36244 Bad Hersfeld
DE

Email: gpsr@libri.de

Unsere Kundinnen und Kunden meinen

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Unsere Kundinnen und Kunden meinen

0 Bewertungen filtern

Die Leseprobe wird geladen.
  • Produktbild: Introduction to Convective Heat Transfer
  • Produktbild: Introduction to Convective Heat Transfer
  • Preface xv

    About the Author xvii

    About the Companion Website xviii

    1 Foundations of Convective Heat Transfer 1

    1.1 Fundamental Concepts 1

    1.2 Coordinate Systems 1

    1.3 The Continuum and Thermodynamic Equilibrium Concepts 2

    1.4 Velocity and Acceleration 3

    1.5 Description of a Fluid Motion: Eulerian and Lagrangian Coordinates and Substantial Derivative 4

    1.5.1 Lagrangian Approach 4

    1.5.2 Eulerian Approach 5

    1.6 Substantial Derivative 7

    1.7 Conduction Heat Transfer 10

    1.8 Fluid Flow and Heat Transfer 11

    1.9 External Flow 11

    1.9.1 Velocity Boundary Layer and Newton's Viscosity Relation 11

    1.9.2 Thermal Boundary Layer 12

    1.10 Internal Flow 19

    1.10.1 Mean Velocity 19

    1.10.2 Mean Temperature 20

    1.11 Thermal Radiation Heat Transfer 22

    1.12 The Reynolds Transport Theorem: Time Rate of Change of an Extensive Property of a System Expressed in Terms of a Fixed Finite Control Volume 22

    Problems 28

    References 31

    2 Fundamental Equations of Laminar Convective Heat Transfer 33

    2.1 Introduction 33

    2.2 Integral Formulation 33

    2.2.1 Conservation of Mass in Integral Form 33

    2.2.2 Conservation of Linear Momentum in Integral Form 34

    2.2.3 Conservation of Energy in Integral Form 36

    2.3 Differential Formulation of Conservation Equations 38

    2.3.1 Conservation of Mass in Differential Form 38

    2.3.1.1 Cylindrical Coordinates 41

    2.3.1.2 Spherical Coordinates 41

    2.3.2 Conservation of Linear Momentum in Differential Form 42

    2.3.2.1 Equation of Motion for a Newtonian Fluid with Constant Dynamic Viscosity ¿ and Density ¿ 45

    2.3.2.2 Cartesian Coordinates (x, y, z) 45

    2.3.2.3 Cylindrical Coordinates (r, ¿,z) 46

    2.3.2.4 Spherical Coordinates (r, ¿, ¿) 46

    2.3.3 Conservation of Energy in Differential Form 47

    2.3.3.1 Mechanical Energy Equation 53

    2.3.3.2 Thermal Energy Equation 53

    2.3.3.3 Thermal Energy Equation in Terms of Internal Energy 54

    2.3.3.4 Thermal Energy Equation in Terms of Enthalpy 55

    2.3.3.5 Temperature T and Constant Volume Specific Heat CV 55

    2.3.3.6 Temperature and Constant Pressure Specific Heat cp 56

    2.3.3.7 Special Cases of the Differential Energy Equation 58

    2.3.3.8 Perfect Gas and the Thermal Energy Equation Involving T and cp 58

    2.3.3.9 Perfect Gas and the Thermal Energy Equation Involving T and CV 58

    2.3.3.10 An Incompressible Pure Substance 58

    2.3.3.11 Rectangular Coordinates 59

    2.3.3.12 Cylindrical Coordinates (r, ¿, z) 59

    2.3.3.13 Spherical Coordinates (r, ¿, ¿) 59

    Problems 64

    References 67

    3 Equations of Incompressible External Laminar Boundary Layers 69

    3.1 Introduction 69

    3.2 Laminar Momentum Transfer 69

    3.3 The Momentum Boundary Layer Concept 70

    3.3.1 Scaling of Momentum Equation 71

    3.4 The Thermal Boundary Layer Concept 76

    3.4.1 Scaling of Energy Equation 77

    3.5 Summary of Boundary Layer Equations of Steady Laminar Flow 82

    Problems 82

    References 83

    4 Integral Methods in Convective Heat Transfer 85

    4.1 Introduction 85

    4.2 Conservation of Mass 85

    4.3 The Momentum Integral Equation 87

    4.3.1 The Displacement Thickness ¿1 88

    4.3.2 Momentum Thickness ¿2 89

    4.4 Alternative Form of the Momentum Integral Equation 90

    4.5 Momentum Integral Equation for Two-Dimensional Flow 90

    4.6 Energy Integral Equation 91

    4.6.1 Enthalpy Thickness 93

    4.6.2 Conduction Thickness 93

    4.6.3 Convection Conductance or Heat Transfer Coefficient 93

    4.7 Alternative Form of the Energy Integral Equation 94

    4.8 Energy Integral Equation for Two-Dimensional Flow 94

    Problems 94

    References 96

    5 Dimensional Analysis 97

    5.1 Introduction 97

    5.2 Dimensional Analysis 101

    5.2.1 Dimensional Homogeneity 102

    5.2.2 Buckingham ¿ Theorem 102

    5.2.3 Determination of ¿ Terms 103

    5.3 Nondimensionalization of Basic Differential Equations 116

    5.4 Discussion 125

    5.5 Dimensionless Numbers 125

    5.5.1 Reynolds Number 125

    5.5.2 Peclet Number 126

    5.5.3 Prandtl Number 126

    5.5.4 Nusselt Number 126

    5.5.5 Stanton Number 126

    5.5.6 Skin Friction Coefficient 126

    5.5.7 Graetz Number 127

    5.5.8 Eckert Number 127

    5.5.9 Grashof Number 127

    5.5.10 Rayleigh Number 127

    5.5.11 Brinkman Number 127

    5.6 Correlations of Experimental Data 128

    Problems 136

    References 147

    6 One-Dimensional Solutions in Convective Heat Transfer 149

    6.1 Introduction 149

    6.2 Couette Flow 151

    6.3 Poiseuille Flow 156

    6.4 Rotating Flows 171

    Problems 175

    References 180

    7 Laminar External Boundary Layers: Momentum and Heat Transfer 183

    7.1 Introduction 183

    7.2 Velocity Boundary Layer over a Semi-Infinite Flat Plate: Similarity Solution 183

    7.2.0.1 x-Component of Velocity - u/ U¿ 190

    7.2.0.2 Boundary Layer Thickness ¿(x) 190

    7.2.0.3 Wall Shear Stress ¿w 191

    7.2.0.4 Local Skin Friction Coefficient cf (x) 191

    7.2.0.5 drag Force d 192

    7.2.0.6 Average Skin Friction Coefficient c¿f 192

    7.2.0.7 Displacement Thickness ¿1(x) 192

    7.2.0.8 Momentum Thickness ¿2(x) 192

    7.3 Momentum Transfer over a Wedge (Falkner-Skan Wedge Flow): Similarity Solution 195

    7.4 Application of Integral Methods to Momentum Transfer Problems 201

    7.4.1 Laminar Forced Flow over a Flat Plate with Uniform Velocity 203

    7.4.2 Two-Dimensional Laminar Flow over a Surface with Pressure Gradient (Variable Free Stream Velocity) 204

    7.4.2.1 The Correlation Method of Thwaites 207

    7.4.2.2 A Thwaites Type Correlation for Axisymmetric Body 212

    7.5 Viscous Incompressible Constant Property Parallel Flow over a Semi-Infinite Flat Plate: Similarity Solution for Uniform Wall Temperature Boundary Condition 212

    7.6 Low-Prandtl-Number Viscous Incompressible Constant Property Parallel Flow over a Semi-Infinite Flat Plate: Similarity Solutions for Uniform Wall Temperature Boundary Condition 225

    7.7 High-Prandtl-Number Viscous Incompressible Constant Property Parallel Flow over a Semi-Infinite Flat Plate: Similarity Solutions for Uniform Wall Temperature Boundary Condition 228

    7.8 Viscous Incompressible Constant Property Parallel Flow over a Semi-Infinite Flat Plate: Similarity Solution for Uniform Heat Flux Boundary Condition 230

    7.9 Viscous Incompressible Constant Property Parallel Flow over a Semi-Infinite Flat Plate: Similarity Solutions for Variable Wall Temperature Boundary Condition 237

    7.9.1 Superposition Principle 245

    7.10 Viscous Incompressible Constant Property Flow over a Wedge (Falkner-Skan Wedge Flow): Similarity Solution for Uniform Wall Temperature Boundary Condition 249

    7.11 Effect of Property Variation 252

    7.12 Application of Integral Methods to Heat Transfer Problems 253

    7.12.1 Viscous Flow with Constant Free Stream Velocity Along a Semi-Infinite Plate Under Uniform Wall Temperature: With Unheated Starting Length or Adiabatic Segment 256

    7.12.1.1 The Plate Without Unheated Starting Length 262

    7.12.2 Viscous Flow with Constant Free Stream Velocity Along a Semi-Infinite Plate with Uniform Wall Heat Flux: With Unheated Starting Length (Adiabatic Segment) 262

    7.12.2.1 The Plate with No Unheated Starting Length 265

    7.13 Superposition Principle 265

    7.13.1 Superposition Principle Applied to Slug Flow over a Flat Plate: Arbitrary Variation in Wall Temperature 266

    7.13.1.1 Boundary Condition: Single Step at X = 0 266

    7.13.1.2 Boundary Condition: Two Steps at X = 0 and X =¿1 268

    7.13.1.3 Boundary Condition: Three Steps at X = 0, X =¿1 , and X =¿2 268

    7.13.2 Superposition Principle Applied to Slug Flow over a Flat Plate: Arbitrary Variation in Wall Heat Flux 272

    7.13.2.1 Boundary Condition: Single Step at X = 0 273

    7.13.2.2 Boundary Condition: Two Steps at X = 0 and X =¿1 274

    7.13.2.3 Boundary Condition: Triple Steps at X = 0, X =¿1 , and X =¿2 275

    7.13.3 Superposition Principle Applied to Viscous Flow over a Flat Plate: Stepwise Variation in Wall Temperature 278

    7.13.3.1 First Problem 278

    7.13.3.2 Second Problem 279

    7.13.3.3 Heat Flux for 0 < X < ¿ 279

    > ¿ 1 280

    7.13.4 Superposition Principle Applied to Viscus Flow over a Flat Plate: Stepwise Variation in Surface Heat Flux 282

    7.13.4.1 First Problem 282

    7.13.4.2 Second Problem 283

    7.14 Viscous Flow over a Flat Plate with Arbitrary Surface Temperature Distribution 284

    7.15 Viscous Flow over a Flat Plate with Arbitrarily Specified Heat Flux 289

    7.16 One-Parameter Integral Method for Incompressible Two-Dimensional Laminar Flow Heat Transfer: Variable U ¿ (x) and Constant Tw ¿ T¿ = const 293

    7.17 One-Parameter Integral Method for Incompressible Laminar Flow Heat Transfer over a Constant Temperature of a Body of Revolution 295

    Problems 299

    References 310

    8 Laminar Momentum and Heat Transfer in Channels 313

    8.1 Introduction 313

    8.2 Momentum Transfer 313

    8.2.1 Hydrodynamic Considerations in Ducts 313

    8.2.2 Fully Developed Laminar Flow in Circular Tube 318

    8.2.3 Fully Developed Flow Between Two Infinite Parallel Plates 323

    8.3 Thermal Considerations in Ducts 326

    8.4 Heat Transfer in the Entrance Region of Ducts 335

    8.4.1 Circular Pipe: Slug Flow Heat Transfer in the Entrance Region 337

    8.4.1.1 Heat Transfer for Low-Prandtl-Number Fluid Flow (Slug Flow) in the Entrance Region of Circular Tube Subjected to Constant Wall Temperature 337

    8.4.1.2 Heat Transfer to Low-Prandtl-Number Fluid Flow (Slug Flow) in the Entrance Region of the Circular Tube Subjected to Constant Heat Flux 345

    8.4.1.3 Empirical and Theoretical Correlations for Viscous Flow Heat Transfer in the Entrance Region of the Circular Tube 350

    8.4.2 Parallel Plates: Slug Flow Heat Transfer in the Entrance Region 355

    8.4.2.1 Heat Transfer to a Low-Prandtl-Number Fluid (Slug Flow) in the Entrance Region of Parallel Plates: Both Plates Are Subjected to Constant Wall Temperatures 355

    8.4.2.2 Heat Transfer for Low-Prandtl-Number Fluid Flow (Slug Flow) in the Entrance Region of Parallel Plates: Both Plates Are Subjected to UHF 358

    8.4.2.3 Heat Transfer for Low-Prandtl-Number Fluid Flow (Slug Flow) in the Entrance Region of Parallel Plates: Upper Plate Is Insulated While the Lower Plate Is Subjected to Constant Wall Temperature 363

    8.4.2.4 Heat Transfer for Low-Prandtl-Number Fluid Flow (Slug Flow) in the Entrance Region of Parallel Plates: Upper Plate Is Insulated While the Lower Plate Is Subjected to Constant Heat Flux 367

    8.4.2.5 Empirical and Theoretical Correlations for Viscous Flow Heat Transfer in the Entrance Region of Parallel Plates 370

    8.5 Fully Developed Heat Transfer 372

    8.5.1 Circular Tube 372

    8.5.1.1 HFD and TFD Laminar Forced Convection Heat Transfer for Slug Flow in a Circular Pipe Subjected to Constant Wall Heat Flux 372

    8.5.1.2 HFD and TFD Laminar Forced Convection Heat Transfer for Viscous Flow in a Circular Tube Subjected to Constant Wall Heat Flux 375

    8.5.1.3 HFD and TFD Laminar Forced Convection Heat Transfer for Viscous Flow in a Circular Tube Subjected to Constant Wall Temperature 378

    8.5.2 Infinite Parallel Plates 382

    8.5.2.1 HFD and TFD Laminar Forced Convection Heat Transfer for Viscous Flow Between a Parallel Plate Channel. Both Plates Are Subjected to Constant Wall Heat Flux Boundary Condition 383

    8.6 Heat Transfer in the Thermal Entrance Region 387

    8.6.1 Circular Tube 388

    8.6.1.1 Graetz Problem: HFD and Thermally Developing Flow in a Circular Tube under Constant Wall Temperature Boundary Condition 388

    8.6.1.2 The Leveque Solution: UWT Boundary Condition 401

    8.6.1.3 Graetz Problem: HFD and Thermally Developing Flow for Viscous Flow in Circular Tube Under Uniform Wall Heat Flux Boundary Condition 406

    8.6.1.4 Empirical and Theoretical Correlations for Viscous Flow in the Thermal Entrance Region of the Pipe 415

    8.6.2 Two Infinite Parallel Plates 419

    8.6.2.1 Graetz Problem: HFD and Thermally Developing Flow Between Parallel Plates Subjected to Constant Wall Temperature 419

    8.6.2.2 Graetz Problem: HFD and Thermally Developing Flow Between Parallel Plates Subjected to Constant Wall Heat Flux 428

    8.6.2.3 Empirical and Theoretical Correlations for Viscous Flow in Thermal Entrance Region of Parallel Plates 436

    8.7 Circular Pipe with Variable Surface Temperature Distribution in the Axial Direction 438

    8.8 Circular Pipe with Variable Surface Heat Flux Distribution in the Axial Direction 443

    8.9 Short Tubes 446

    8.10 Effect of Property Variation 448

    8.11 Regular Sturm-Liouville Systems 449

    Problems 450

    References 463

    9 Foundations of Turbulent Flow 465

    9.1 Introduction 465

    9.2 The Reynolds Experiment 465

    9.3 Nature of Turbulence 466

    9.4 Time Averaging and Fluctuations 467

    9.5 Isotropic Homogeneous Turbulence 470

    9.6 Reynolds Averaging 470

    9.7 Governing Equations of Incompressible Steady Mean Turbulent Flow 474

    9.8 Turbulent Momentum Boundary Layer Equation 477

    9.9 Turbulent Energy Equation 478

    9.10 Turbulent Boundary Layer Energy Equation 479

    9.11 Closure Problem of Turbulence 480

    9.12 Eddy Diffusivity of Momentum 481

    9.13 Eddy Diffusivity of Heat 482

    9.14 Transport Equations in the Cylindrical Coordinate System 483

    9.15 Experimental Work on the Turbulent Mean Flow 484

    9.15.1 Turbulent Flow in Pipe: Velocity Profiles 485

    9.15.2 Turbulent Flow over a Flat Plate: Velocity Profiles 491

    9.16 Transition to Turbulent Flow 496

    Problems 498

    References 504

    10 Turbulent External Boundary Layers: Momentum and Heat Transfer 507

    10.1 Introduction 507

    10.2 Turbulent Momentum Boundary Layer 507

    10.3 Turbulence Models 508

    10.3.1 Zero-Equation Models 508

    10.3.1.1 Boussinesq Model 508

    10.3.1.2 Prandtl's Mixing-Length Model 508

    10.3.1.3 Van Driest Model 509

    10.4 Turbulent Flow over a Flat Plate with Constant Free-Stream Velocity: Couette Flow Approximation 510

    10.4.1 Inner Region 510

    10.5 The Universal Velocity Profile 511

    10.5.1 Three-Layer (von Karman) Model for the Velocity Profile 511

    10.5.2 Other Velocity Models 514

    10.6 Approximate Solution by the Integral Method for the Turbulent Momentum Boundary Layer over a Flat Plate 514

    10.7 Laminar and Turbulent Boundary Layer 519

    10.8 Other Eddy Diffusivity Momentum Models 521

    10.9 Turbulent Heat Transfer 522

    10.10 Analogy Between Momentum and Heat Transfer 529

    10.10.1 Reynold's Analogy 529

    10.10.2 Chilton-Colburn Analogy 531

    10.10.3 Prandtl-Taylor Analogy 532

    10.10.4 Von Karman Analogy 535

    10.11 Some Other Correlations for Turbulent Flow over a Flat Plate 539

    10.12 Turbulent Flow Along a Semi-infinite Plate with Unheated Starting Length: Constant Temperature Solution 542

    10.13 Flat Plate with Arbitrarily Specified Surface Temperature 550

    10.14 Constant Free-Stream Velocity Flow Along a Flat Plate with Uniform Heat Flux 553

    10.15 Turbulent Flow Along a Semi-Infinite Plate with Arbitrary Heat Flux Distribution 554

    10.16 Turbulent Transition and Overall Heat Transfer 558

    10.17 Property Variation 564

    Problems 564

    References 569

    11 Turbulent Internal Flow: Momentum and Heat Transfer 573

    11.1 Introduction 573

    11.2 Momentum Transfer 573

    11.2.1 Momentum Transfer in Infinite Two Parallel Plates 573

    11.2.1.1 The Entrance Region 574

    11.2.1.2 The HFD Region 575

    11.2.1.3 Prandtl's Mixing-Length Model 578

    11.2.1.4 Buffer Region 579

    11.2.1.5 The Mean Velocity 582

    11.2.1.6 Skin Friction Coefficient or Fanning Friction Factor cf 582

    11.2.2 Momentum Transfer in Circular Pipe Flow 585

    11.2.2.1 Entrance Region 585

    11.2.2.2 The HFD Region 586

    11.2.2.3 Average Velocity V 589

    11.2.2.4 Skin Friction Factor cf 589

    11.2.2.5 Moody Friction Factor f 589

    11.2.2.6 Prandtl Mixing-Length Model 590

    11.2.2.7 Laminar Sublayer 591

    11.2.2.8 Buffer Region 591

    11.2.2.9 Turbulent Region 591

    11.2.2.10 Moody Friction Factor 592

    11.2.2.11 Fanning Friction Factor 593

    11.2.2.12 The Power Law Velocity Distribution 596

    11.3 Fully Developed Turbulent Heat Transfer 597

    11.3.1 TFD and HFD Turbulent Flow Between Parallel Plates Subjected to UHF 598

    11.3.1.1 Mean Stream Temperature 602

    11.3.2 TFD and HFD Turbulent Flow in a Pipe Subjected to UHF 605

    11.3.2.1 Laminar Viscous Sublayer: 0 < y+ < 5 609

    11.3.2.2 Buffer Layer: 5 < y+ < 30 610

    11.3.2.3 Turbulent Region: y+ > 30 610

    11.4 HFD Thermally Developing Turbulent Heat Transfer 618

    11.4.1 Circular Duct with UWT 618

    11.4.2 Circular Duct with Uniform Wall Heat Flux 625

    11.4.2.1 Solution for Fully Developed Temperature Distribution ¿1 626

    11.4.2.2 Solution for the Entry Region Temperature Distribution ¿2 627

    11.5 Analogies for Internal Flow 629

    11.5.1 Reynolds Analogy 629

    11.5.2 Colburn Analogy 631

    11.5.3 Prandtl-Taylor Analogy 631

    11.5.3.1 Laminar Sublayer 632

    11.5.3.2 Turbulent Core 632

    11.5.4 von Karman Analogy 633

    11.5.4.1 Laminar Sublayer: 0 ¿ y+ ¿ 5 634

    11.5.4.2 Buffer Layer: 5 ¿ y+ ¿ 30 635

    11.5.4.3 Turbulent Core: y+ ¿ 30 635

    11.5.5 The Analogy of Kadar and Yaglom 636

    11.5.6 The Analogy of Yu et al. 637

    11.5.7 Martinelli Analogy 639

    11.6 Combined Entrance Region 641

    11.7 Empirical and Theoretical Correlations for Turbulent Flow in Channels 642

    11.7.1.1 Colburn Correlation 645

    11.7.1.2 Dittus and Boelter Correlation 646

    11.7.1.3 Sieder-Tate Correlation 646

    11.7.1.4 Hausen Correlations 647

    11.7.1.5 Petukhov Correlation 647

    11.7.1.6 Gnielinski Correlation 649

    11.7.1.7 Gnielinski Correlation with Modification 650

    11.7.1.8 Sleicher and Rouse Correlation 650

    11.7.1.9 Nusselt Correlation 651

    11.8 Heat Transfer in Transitional Flow 652

    11.8.1 Friction Factor in the Transitional Flow 653

    11.8.2 Heat Transfer in the Transition Region 654

    11.8.2.1 Tam and Ghajar Approach 654

    11.8.2.2 Churchill Approach 655

    11.8.2.3 Gnielinski Approach 656

    11.8.2.4 Abraham et al. Approach 657

    11.9 Effect of Property Variation 660

    Problems 660

    References 670

    12 Free Convection Heat Transfer 675

    12.1 Introduction 675

    12.2 Fundamental Equations and Dimensionless Parameters of Free Convection 675

    12.3 Scaling in Natural Convection 679

    12.4 Similarity Solution for Laminar Boundary Layer over a Semi-Infinite Vertical Flat Plate 681

    12.4.1 Constant Wall Temperature 681

    12.4.2 Uniform Heat Flux 688

    12.5 Integral Method (von Karman-Pohlhausen Method): An Approximate Analysis of Laminar Free Convection on a Vertical Plate 695

    12.5.1 Constant Wall Temperature 697

    12.5.2 Uniform Heat Flux 700

    12.6 Turbulent Free Convection Heat Transfer on a Vertical Plate 702

    12.7 Empirical Correlations for Free Convection 704

    12.7.1 Vertical Plate 704

    12.7.2 Horizontal Plate 712

    12.7.3 Inclined Plates 715

    12.7.4 Vertical Cylinders 719

    12.7.5 Horizontal Cylinder 722

    12.7.6 Inclined Cylinder 723

    12.7.7 Free Convection from Vertical Cylinders of Small Diameter 724

    12.8 Free Convection Within Parallel Plate Channels 725

    12.8.1 Vertical Parallel Plate Channel 725

    12.8.2 Horizontal Parallel Plate Channel 731

    12.8.3 Inclined Parallel Plate Channel 732

    12.9 Rectangular Enclosures 735

    12.9.1 Horizontal Rectangular Enclosure (¿=0) 735

    12.9.2 Vertical Rectangular Enclosure 737

    12.9.3 Inclined Rectangular Enclosure 740

    12.10 Horizontal Concentric Cylinders 743

    12.11 Concentric Spheres 744

    12.12 Spheres 744

    Problems 745

    References 752

    Index 755