• Produktbild: Particle Accelerator Physics II
  • Produktbild: Particle Accelerator Physics II
- 10%

Particle Accelerator Physics II Nonlinear and Higher-Order Beam Dynamics

10% sparen

95,99 € UVP 106,99 €

inkl. MwSt, Versandkostenfrei

Lieferung nach Hause

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

05.11.2011

Verlag

Springer Berlin

Seitenzahl

472

Maße (L/B/H)

23,5/15,5/2,7 cm

Gewicht

743 g

Auflage

Second Edition 1999

Sprache

Englisch

ISBN

978-3-642-64177-0

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

05.11.2011

Verlag

Springer Berlin

Seitenzahl

472

Maße (L/B/H)

23,5/15,5/2,7 cm

Gewicht

743 g

Auflage

Second Edition 1999

Sprache

Englisch

ISBN

978-3-642-64177-0

Herstelleradresse

Springer-Verlag KG
Sachsenplatz 4-6
1201 Wien
AT

Email: ProductSafety@springernature.com

Unsere Kundinnen und Kunden meinen

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Unsere Kundinnen und Kunden meinen

0 Bewertungen filtern

  • Produktbild: Particle Accelerator Physics II
  • Produktbild: Particle Accelerator Physics II
  • 1. Hamiltonian Formulation of Beam Dynamics.- 1.1 Hamiltonian Formalism.- 1.1.1 Lagrange Equations.- 1.1.2 Hamiltonian Equations.- 1.1.3 Canonical Transformations.- 1.1.4 Action-Angle Variables.- 1.2 Hamiltonian Resonance Theory.- 1.2.1 Nonlinear Hamiltonian.- 1.2.2 Resonant Terms.- 1.2.3 Resonance Patterns and Stop-Band Width.- 1.2.4 Third-Order Resonance.- 1.3 Hamiltonian and Coupling.- 1.3.1 Linearly Coupled Motions.- 1.3.2 Higher-Order Coupling Resonances.- 1.3.3 Multiple Resonances.- 1.4 Symplectic Transformation.- Problems.- 2. General Electromagnetic Fields.- 2.1 General Transverse Magnetic-Field Expansion.- 2.2 Third-Order Differential Equation of Motion.- 2.3 Periodic Wiggler Magnets.- 2.3.1 Wiggler Field Configuration.- 2.3.2 Focusing in a Wiggler Magnet.- 2.3.3 Hard-Edge Model of Wiggler Magnets.- 2.4 Superconducting Magnet.- Problems.- 3. Dynamics of Coupled Motion.- 3.1 Conjugate Trajectories.- 3.2 Particle Motion in a Solenoidal Field.- 3.3 Transverse Coupled Oscillations.- 3.3.1 Equations of Motion in Coupling Systems.- 3.3.2 Coupled Beam Dynamics in Skew Quadrupoles.- 3.3.3 Equations of Motion in a Solenoid Magnet.- 3.3.4 Transformation Matrix for a Solenoid Magnet.- 3.3.5 Betatron Functions for Coupled Motion.- Problems.- 4. Higher-Order Perturbations.- 4.1 Kinematic Perturbation Terms.- 4.2 Control of the Central Beam Path.- 4.3 Dipole Field Errors and Dispersion Function.- 4.4 Dispersion Function in Higher Order.- 4.4.1 Chromaticity in Higher Approximation.- 4.4.2 Nonlinear Chromaticity.- 4.5 Perturbation Methods in Beam Dynamics.- 4.5.1 Periodic Distribution of Statistical Perturbations.- 4.5.2 Statistical Methods to Evaluate Perturbations.- Problems.- 5. Hamiltonian Nonlinear Beam Dynamics.- 5.1 Higher-Order Beam Dynamics.- 5.1.1 Multipole Errors.- 5.1.2 Nonlinear Matrix Formalism.- 5.2 Aberrations.- 5.2.1 Geometric Aberrations.- 5.2.2 Filamentation of Phase Space.- 5.2.3 Chromatic Aberrations.- 5.2.4 Particle Tracking.- 5.3 Hamiltonian Perturbation Theory.- 5.3.1 Tune Shift in Higher Order.- Problems.- 6. Charged Particle Acceleration.- 6.1 Accelerating Fields in Resonant rf Cavities.- 6.1.1 Wave Equation.- 6.1.2 Waveguide Modes.- 6.1.3 rf Cavities.- 6.1.4 Cavity Losses and Shunt Impedance.- 6.1.5 Determination of rf Parameters.- 6.2 Beam-Cavity Interaction.- 6.2.1 Coupling Between rf Field and Particles.- 6.2.2 Beam Loading and rf System.- 6.2.3 Higher-Order Mode Losses in an rf Cavity.- 6.2.4 Beam Loading in Circular Accelerators.- 6.3 Higher-Order Phase Focusing.- 6.3.1 Path Length in Higher Order.- 6.3.2 Higher-Order Phase Space Motion.- 6.3.3 Stability Criteria.- 6.4 FODO Lattice and Acceleration.- 6.4.1 Transverse Beam Dynamics and Acceleration.- 6.4.2 Adiabatic Damping.- Problems.- 7. Synchrotron Radiation.- 7.1 Theory of Synchrotron Radiation.- 7.1.1 Radiation Field.- 7.2 Synchrotron Radiation Power and Energy Loss.- 7.3 Spatial Distribution of Synchrotron Radiation.- 7.4 Synchrotron Radiation Spectrum.- 7.4.1 Radiation Field in the Frequency Domain.- 7.4.2 Spectral Distribution in Space and Polarization.- 7.4.3 Angle-Integrated Spectrum.- Problems.- 8. Hamiltonian Many Particle Systems.- 8.1 The Vlasov Equation.- 8.1.1 Betatron Oscillations and Perturbations.- 8.1.2 Damping.- 8.2 Damping of Oscillations in Electron Accelerators.- 8.2.1 Damping of Synchrotron Oscillations.- 8.2.2 Damping of Vertical Betatron Oscillations.- 8.2.3 Robinson’s Damping Criterion.- 8.2.4 Damping of Horizontal Betatron Oscillations.- 8.3 The Fokker-Planck Equation.- 8.3.1 Stationary Solution of the Fokker-Planck Equation.- 8.3.2 Particle Distribution Within a Finite Aperture.- 8.3.3 Particle Distribution in the Absence of Damping.- Problems.- 9. Particle Beam Parameters.- 9.1 Particle Distribution in Phase Space.- 9.1.1 Diffusion Coefficient and Synchrotron Radiation.- 9.1.2 Quantum Excitation of Beam Emittance.- 9.1.3 Horizontal Equilibrium Beam Emittance.- 9.1.4 Vertical Equilibrium Beam Emittance.- 9.2 Equilibrium Energy Spread and Bunch Length.- 9.3 Phase-Space Manipulation.- 9.3.1 Exchange of Transverse Phase-Space Parameters.- 9.3.2 Exchange of Longitudinal Phase-Space Parameters.- 9.4 Polarization of Particle Beam.- Problems.- 10. Collective Phenomena.- 10.1 Statistical Effects.- 10.1.1 Schottky Noise.- 10.1.2 Stochastic Cooling.- 10.1.3 Touschek Effect.- 10.1.4 Intra-Beam Scattering.- 10.2 Collective Self Fields.- 10.2.1 Transverse Self Fields.- 10.2.2 Fields from Image Charges.- 10.2.3 Space-Charge Effects.- 10.2.4 Longitudinal Space-Charge Field.- 10.3 Beam-Current Spectrum.- 10.4 Wake Fields and Impedance.- 10.4.1 Definitions of Wake Field and Impedance.- 10.4.2 Impedances in an Accelerator Environment.- 10.5 Coasting-Beam Instabilities.- 10.5.1 Negative-Mass Instability.- 10.5.2 Dispersion Relation.- 10.5.3 Landau Damping.- 10.5.4 Transverse Coasting-Beam Instability.- 10.6 Longitudinal Single-Bunch Effects.- 10.6.1 Potential-Well Distortion.- 10.7 Transverse Single-Bunch Instabilities.- 10.7.1 Beam Break-Up in Linear Accelerators.- 10.7.2 Fast Head-Tail Effect.- 10.7.3 Head-Tail Instability.- 10.8 Multi-Bunch Instabilities.- Problems.- 11. Insertion Device Radiation.- 11.1 Particle Dynamics in an Undulator.- 11.2 Undulator Radiation.- 11.3 Undulator Radiation Distribution.- 11.4 Elliptical Polarization.- Problems.- References.- Suggested Reading.- Author Index.