103,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Broschiertes Buch

Matrix and Tensor Decomposition: Application to Data Fusion and Analysis introduces the main theoretical concepts for data fusion using matrix and tensor decompositions, beginning with the concept of "diversity", which facilitates identifiability. It provides the link between theoretical results and practice by addressing key implementation issues, such as model choice for a given problem, identification of sources of diversity, parameter selection and performance evaluation. Using rich diagrams to help communicate the main ideas and relationships among models and methods, this book presents a…mehr

Produktbeschreibung
Matrix and Tensor Decomposition: Application to Data Fusion and Analysis introduces the main theoretical concepts for data fusion using matrix and tensor decompositions, beginning with the concept of "diversity", which facilitates identifiability. It provides the link between theoretical results and practice by addressing key implementation issues, such as model choice for a given problem, identification of sources of diversity, parameter selection and performance evaluation. Using rich diagrams to help communicate the main ideas and relationships among models and methods, this book presents a readily accessible reference for researchers on the methods and application of matrix and tensor decompositions.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Christian Jutten received a PhD degree in 1981 and the Docteur ès Sciences degree in 1987 from the Institut National Polytechnique of Grenoble (France). He is currently deputy director of Institute for Information Sciences and Technologies of CNRS. He has been deputy director of the Grenoble images, speech, signal and control laboratory (GIPSA) and director of the Department Images-Signal (DIS from 2007 to 2010. For 30 years, his research interests have been blind source separation, independent component analysis and learning in neural networks, including theoretical aspects (separability, source separation in nonlinear mixtures, sparsity) and applications in signal processing (biomedical, seismic, hyperspectral imaging, speech). He is author or co-author of more than 75 papers in international journals, four books, 25 invited plenary talks and 170 communications in international conferences. He received the Medal Blondel in 1997 from SEE (French Electrical Engineering society) for his contributions in source separation and independent component analysis, and has been elevated as a Fellow IEEE and a senior Member of Institut Universitaire de France in 2008. In 2012, he was awarded by an ERC Advanced Grant CHESS. In 2013, he has been elevated as EURASIP Fellow and reconducted for five years as a senior member of Institut Universitaire de France.